Upcoming Talks

PalMod Seminar Series

Wed. 19. Jan 2021, 15 h

G.Lohmann (AWI): Simulation the Glacial Climate and Ocean Circulation: Challenges for PalMod

L. Jonkers (MARUM): Are climate models underestimating spatial temperature variability?

Seminar IUP Heidelberg: Climate variability across scales

Link for details

Thu. 3.12.2020 16h Tine Nilsen (UIT, Norway): Decadal variability and the scaling paradigm”.


Job announcements


Sorry, we do not have any open positions in the PalMod II project yet.

PalMod - Paleo Modelling


PalMod is funded by the Federal Ministry of Education and Science (BMBF) to understand climate system dynamics and variability during the last glacial cycle.


Natural methane emissions – from the glacial to the present

In a new study in Climate of the Past Kleinen, Mikolajewicz, and Brovkin (Max Planck Institute for Meteorology), were able to show that the changes in methane concentration between the Last Glacial Maximum (LGM, about 20000 years ago) and the preindustrial late Holocene (PI), 300 years ago, can be explained entirely by changes in the natural methane emissions caused by environmental changes.


Natural net emissions of methane in the present-day climate. Credit: Thomas Kleinen

Kleinen, Thomas , Mikolajewicz, Uwe und Brovkin, Victor (2020) Terrestrial methane emissions from the Last Glacial Maximum to the preindustrial period. Open Access Climate of the Past, 16 (2). pp. 575-595. DOI 10.5194/cp-16-575-2020.

Source: Max Planck Institute for Meteorology


Recent Highlights - PalMod Publication


Freshwater release and elevation loss affect climate during Heinrich events


A team of researchers around Dr. Florian Ziemen at the Max Planck Institute for Meteorology found that Heinrich events, climate changes during the last ice age, were caused by a succession of the effects of two mechanisms: iceberg calving, having effects on the ocean, and ice sheet elevation loss, having effects on the atmosphere. Using a novel model setup, they were able to study the relationship between the two individual effects. They were the first to observe the succession of both effects in one simulation.

Citation: Ziemen, F., Kapsch, M.-L., Klockmann, M., & Mikolajewicz, U. (2019). Heinrich events show two-stage climate response in transient glacial simulations. Climate of the Past, 15, 153-168. doi:10.5194/cp-15-153-2019


How cold was Antarctica during the last ice age?


[August 2018] 

In a recent study by scientists from the Alfred Wegener Institute together with French colleagues temperature changes in Antarctica during the last ice age have been reconstructed. Ice core data and model results indicate a much stronger cooling of West Antarctica than East Antarctica during that time. Furthermore, the study enabled a new estimate of Antarctic ice sheet height changes during this past climate stage. The results of this study have been recently published in Nature Communications.

Citation: Reconciling glacial Antarctic water stable isotopes with ice sheet topography and the isotopic paleothermometer; Martin Werner, Jean Jouzel, Valérie Masson-Delmotte & Gerrit Lohmann; Nature Communicationsvolume 9, Article number: 3537 (2018)



Coastal erosion in the Arctic intensifies global warming

Sea level rise in the past led to the release of greenhouse gases from permafrost

[September 2018] 

The loss of arctic permafrost deposits by coastal erosion could amplify climate warming via the greenhouse effect. A study using sediment samples from the Sea of Okhotsk on the eastern coast of Russia led by AWI researchers revealed that the loss of Arctic permafrost at the end of the last glacial period led to repeated sudden increases in the carbon dioxide concentration in the atmosphere.

press release (AWI)

Citation: Winterfeld, M. et al., Deglacial mobilization of pre-aged terrestrial carbon from degrading permafrost. Nat. Commun. 9, 3666 doi: 10.1038/s41467-018-06080-w (2018).


Sea level fall during glaciation stabilized atmospheric CO2 by enhanced volcanic degassing


[Juli 2017]

Throughout the last 800,000 years, Antarctic temperatures and atmospheric carbon dioxide concentrations showed a similar evolution. However, this was different during the transition to the last ice age: approximately 80,000 years ago, temperature declined, while the carbon dioxide content of the atmosphere remained relatively stable. An international research team led by the GEOMAR Helmholtz Centre for Ocean Research Kiel and the Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research has now discovered that a falling sea level may have caused enhanced volcanic activity in the ocean, which can explain the anomaly. The results are published today in the journal Nature Communications.

press release (AWI)

Citation: Hasenclever, J. et al. Sea level fall during glaciation stabilized atmospheric CO2 by enhanced volcanic degassing. Nat. Commun. 8, 15867 doi: 10.1038/ncomms15867 (2017).

All PalMod publications are listed here.